
École normale supérieure de Rennes Mechatronics Department

More information

To contact the students, who will be happy to answer your questions: concoursMecatro@listes.ens-rennes.fr

CONTACTS

Department director: Pr. Hamid Ben Ahmed

Assistant: Marielle Tanter Tél.: +33 (0)2 99 05 93 44

info-mecatronique@ens-rennes.fr

The Mechatronics department's mission is to train scientists, through and for research, in the field of engineering sciences, in order to:

- produce new knowledge, develop/imagine new concepts, models and methods, validation protocols and tools in laboratories and institutes, research and R&D centers;
- transmit this knowledge to students, future engineers and technicians in universities and schools;
 provide curvet approved of industrial accience development plane or public policies.
- provide expert appraisal of industrial projects, development plans or public policies.

The department offers a unique 4-year training program for careers in research, innovation and teaching. It is based on the ENS Rennes Master's degree. It emphasizes a core of disciplinary skills in mechatronics, as well as cross-disciplinary skills in research, multidisciplinarity, teaching and international relations.

By its very definition, mechatronics is a multi-disciplinary field, with a wide range of teaching options:

- a solid grasp of the physical sciences and associated scientific disciplines ;
- good knowledge of cutting-edge technologies;
- hands-on experience of integrated design approaches.

Recruitment

The department offers two selective recruitment routes with two statuses:

- 1st year admissions via competitive selection exams (PSI, PT, TSI and ATS banks) with the status
 of "normalien-ne fonctionnaire-stagiaire" (remuneration of around €1,500 gross per month and
 ten-year commitment) or parallel admissions in 1st year with a selection based on a portfolio
 with the status of "normalien-ne étudiant-e";
- Admission in 2nd year by competitive examination in 2nd year (at M1 level), with the status of "normalien-ne fonctionnaire-stagiaire";
- Parallel admissions in 3rd year (M2 teaching course) with selection based on portfolio.

Each year, 3 allocations normaliennes are awarded to students admitted to the 1st year of the Mechatronics department, on the basis of their academic excellence and social criteria, providing a guaranteed income of \in 1,000 per month for the entire duration of their studies. It is possible to apply for parallel admissions in addition to the competitive entrance exam.

Job opportunities

By studying mechatronics, you'll be able to master the fundamentals of the discipline and enter specific doctoral programs. You'll be free to choose your research master's degree in the engineering sciences, and more specifically in mechanics, electronics or applied computing, opening up a wide range of career opportunities:

- in research and innovation: with an internationally-recognized doctorate, you can pursue a career as a teacher-researcher or researcher in France or abroad, in major public research organizations or in corporate R&D;
- teaching: with the agrégation, you'll teach in preparatory classes for the grandes écoles, engineering schools or other grandes écoles, IUTs or universities;
 - others: several government organizations offer recruitment on the basis of qualifications.

mecatronique.ens-rennes.fr

Mechatronics Department

1st year (double license)

- L3 Electronics, Electrical Energy, Automation (EEEA)
- L3 Engineering Sciences (SPI)
- End-of-year projects and internship (2 to 3 months)

Semestre 1

Common part SPI & EEEA

SCIF1a (5 ECTS)

- Applied mathematics
- Electromagnetism
- Photonics, Optics, Optoelectronics ROBO1a (4 ECTS)
 - **General Robotics**
 - Serial Robotics
- PROJ1a (5 ECTS)
 - Mechatronic system analysis
 - Report writing assistance
 - Documentary research assistance
 - Electrical certification

ONUM1a (4 ECTS)

- Digital tools :
- Automatic
- State diagram
- Mechanics
- Material resistance
- Electricity
- Actuator prototyping
- PEDA1a (2 ECTS)
 - . Science didactics
- LANG1b
 - . English
- SEM1a
 - **Research seminars**

Spécialités SPI & EEEA

ELEC1a (5 ECTS)

Analog electronics ENER1a (5 ECTS)

- **General Electricity**
- Electrotechnical materials and components

Electromechanical conversion

- MEMA1a (5 ECTS)
 - deformable solid mechanics (RDM)
- rigid solid mechanics (dynamic) COFA1a (5 ECTS)

 - From idea to product

Semestre 2

Common part SPI & EEEA

- INFO1b (3 ECTS)
 - Programming
 - General computer skills
- ROBO1b (4 ECTS)
 - Sensors
 - Axis control, machine state
 - Parallel robotics
- ECOC1b (3 ECTS)
- Ecodesign
- PROJ1b (4 ECTS)
 - Mini project + project
- COAC1b (3 ECTS)
 - Opening course of your choice (activity of your choice)
- LANG1b (3 ECTS)
 - English •
- Courses take place all year round, but grades are counted in semester 2 SEMI1b
 - Research seminars
- STAG1b (8 ECTS)
- Internship
- MALE1a (2 ECTS)
 - Introduction of machine learning

Spécialités SPI & EEEA

ELEC1b (5 ECTS)

- Digital signals
- Communication networks
- ENER1b (5 ECTS)
 - Static conversion
 - PROTO1

MEMA1b (5 ECTS)

- **Continuum Mechanics**
- Mechanics of Materials
- COFA1b (5 ECTS)
- Design
 - Technology
 - Forming

 \sim

2nd year (M1 ISC)

- M1 Complex Systems Engineering (ISC)
- Projects and end-of-year internship (2 to 3 months)

Semester 1

Semester 2

SCIF2a (4 ECTS)

- Applied mathematics
- Thermo-transport
- ROBO2a (2 ECTS) • Sampled Systems
- PROJ2a (3 ECTS)
- Research project
 - Research Seminars
- ELEC2a (4 ECTS)
- Analog Electronics
- Digital modulations
- ENER2a (4 ECTS)

Inverters

- Systems and Machines
- MEMA2a (4 ECTS)
- Plasticity and Viscoplasticity
- Dynamics of Slender Structures
- COFA2a (4 ECTS)
 - Forming

• Quality

INFO2a (2 ECTS)

- Algorithms and Data Structures PEDA2a (3 ECTS)
 - Didactics

LANG2a

English

SEMI2a

Research seminar

COCT2a (COAC2a) (3 ECTS)

• Elective course on a transition theme

- ONUM2b (3 ECTS)
 - Multiphysics simulation (EF)
 - Multiphysics simulation (acausal)
- ROBO2b (3 ECTS)
 - State feedback
 - Robust control
 - vision
 - Dynamic control
- PROJ2b (3 ECTS)
 - Didactic project
- ELEC2b (4 ECTS)
 - Architecture and networks
- Digital systems
- ENER2b (4 ECTS)
- Energy Conversion MEMA2b (4 ECTS)
 - Fluid Mechanics
 - Microfluidics
- COFA2b (4 ECTS)
 - Design
 - Technology
- LANG2b (3 ECTS)
- English
- STAG2b (2 ECTS)
- Internship
- SEMI2b
 - Seminars of transition
- TRAN2b (2 ECTS)
 - Resources and renewable energies
- COCT2b (COAC2b) (3 ECTS)
 - Elective course on a transition theme

Mechatronics Department

Didactic research option

REDI3a : Didactic research (4 ECTS)

- Construction of teaching sequences
- Research dissertation preparation
- Training practice and engineering

<u>3rd year</u>

- M2 Complex Systems Engineering (ISC) teaching : preparation for one of the 3 options for the agrégation externe de sciences industrielles de l'ingénieur SII (electrical engineering, computer engineering or mechanical engineering)
- or Research at Interfaces
- or Research and International

M2 Complex Systems Engineering (ISC) teaching (SII agrégations)

Semester 1

Common part

TMEM3a : Common core in mechanics and materials (4 ECTS)

- General mechanics
- Resistance of materials
- Fluid mechanics
- Choice of materials and processes
- Thermodynamics and thermodynamic machines

TENE3a: Common core in energy conversion (4 ECTS)

- Static conversion 3a
- Electromechanical conversion 3a

TELI3a: Common core in electronics and computer science (4 ECTS)

- Algorithms and data structure
- Website programming
- Architecture
- Databases
- Operating systems
- C++
- Networks

•

•

TROB3a: Common core in robotics (4 ECTS)

Agrégation SII option

AGRG3a : Agrégation (4 ECTS)

Industrial case study

Agrégation exam training

Construction of teaching sequences

- State formalism
- Continuous linear systems
- Sampled linear systems
- Discrete-event systems TP auto et soutenances

Electrical Engineering Specialty

ENER3a : Energy Conversion (5 ECTS)

- General electricity
- Static conversion
- ELEC3a : Electronics (5 ECTS)
 - Digital signals
 - Amplification, filtering, analog transmission

Computer Engineering Specialty

INFO3a : Computer Science (5 ECTS)

- **Operating Systems**
- . Image processing
- Algorithms and proofs
- Software engineering

Mechanical Engineering Specialty

MEMA3a : Mechanics and Materials (5 ECTS)

- Energy approach
- Materials
- Fluid mechanics
- General mechanics
- RDM and MMC
- Thermodynamics

COFA3a : Design and Manufacturing (5 ECTS)

- Design and industrialization
- Polymer and composite shaping

Non-master (ENS diploma)

SEMI3a: Seminars

TINGa: Transitions engineering

- Functional analysis
- Mechanical modeling / simulation
- Energy efficiency
- LCA and eco-design
- Building thermics
- Civil engineering culture

 \sim

- Foundry processes
- Power transmission by gears
- GPS specifications

Semester 2

Electrical Engineering Specialty

ENER3b : Energy conversion (9 ECTS)

- Electromechanical conversion
- Electrical System Control
- ELEC3b : Electronics (9 ECTS)
 - Phase-locked loops and modulation
 - Microwave frequencies

Computer Engineering Specialization

INFO3b : Computer Science (9 ECTS)

- Embedded Systems and Graphical Interfaces
- Databases
- Parallel computing
- Software engineering
- Networks
- ELEC3b : Electronics (9 ECTS)
 - Phase-locked loops and modulation

Mechanical Engineering Specialization

MEMA3b : Mechanics and Materials (9 ECTS)

- continuum mechanics
- Fluid mechanics
- Resistance of materials
- Analysis of dynamic behavior
- COFA3b : Design and Manufacturing (9 ECTS)
 - Forming by material removal and deformation
 - Production management and maintenance
 - Design for manufacturing
 - Specifications, quality control
 - Technology: bearings, hydraulics

4th year

- M2 Complex Systems Engineering (ISC) or other M2 (in France or other countries)
- Research internship (6 months)

Didactic research option

REDI3b : Didactic research (12 ECTS)

- Preparation of research dissertation
- Application internship
- Training practice and engineering


Agrégation SII option

AGRG3a : Agrégation (12 ECTS)

- Practical observation internship
- Sciences of orality
- conference on laicity
- Preparation of practical sequences
- Agrégation exam training
- Admission tests
- Industrial study case

Non-master (ENS diploma)

SEMI3a : Seminars

