Fiche descriptive UE: MEMA3b 2025/2026

Identité

Intitulé :	Mécanique et n	natériaux		Acronyme :	MEN	лАЗb				
Responsable :	Georges Dumont Volume horaire pour l'élève :				82					
Email du responsable :	Georges.Dumor	t@ens-rennes.fr	Volume non-encadré	pour l'élève :	9	8				
Mention du master :	_	es systèmes complexes nement en Sciences pour l'	Semestre :	S4						
Equipe pédagogique :	G. Dumont (Georges.Dumont@ens-rennes.fr), C. Pontonnier (charles.pontonnier@ens-rennes.fr), MC. Jullien (marie-caroline.jullien@univ-rennes.fr)									
Crédits ECTS :	9	Coefficient :	9	Noi	Nombre de modules de l'UE : 4					

Horaires et formats des enseignements :

MEMA3b	Intitulé	Contenu	Heures devant élève	СМ	TD	TP	Intervenants
Module 1 Mécanique des milieux continus		38	36	2	0	Georges Dumont	
Module 2	Résistance de	s matériaux	14	12	2	0	Georges Dumont
Module 3	3 Mécanique des fluides		14	12	2	0	Marie-Caroline Jullien
Module 4	Analyse du co	mportement dynamique	16	14	2	0	Charles Pontonnier

Description des enseignements

Objectifs:

À l'issue de cette UE, les élèves seront capables de

- Choisir une méthode adaptée pour déterminer les équations du mouvement d'un mécanisme
- Déterminer le comportement dynamique d'un mécanisme autour d'une position d'équilibre
- Identifier et résoudre des problèmes de vibration de structures
- Connaître et utiliser des méthodes de résolution numériques
- Réaliser des simulations de déformations par la méthode des éléments finis
- Analyser les résultats de calculs ou de simulations
- Réaliser une démarche expérimentale sur un support donné
- Analyser et synthétiser une démarche expérimentale
- Proposer une mise en situation de démarche expérimentales

Module 1 : Mécanique des milieux continus

- Vibration des structures, application aux poutres en flexion, traction/compression, torsion
- Torsion des poutres à section non circulaire
- Méthodes d'approximation : méthode de Ritz, méthode des éléments finis
- Pratique des éléments finis : maillage, grands déplacements, condition unilatérales (contact)

Approche pratique disciplinaire :

- Démarche expérimentale appliquée: présentation de la démarche (problème, hypothèse, expérimentation, analyse, interprétation), traitement de données expérimentales, plans d'expériences
- Activités pratiques : approches spécialisées de sous-systèmes
- Mise en situation de systèmes support de travaux pratiques, proposition de méthode d'analyse

Module 2 : Résistance des matériaux

- Poutres courbes
- Poutres courtes
- Flambement
- Étude des parois minces
- Treillis

Module 3 : Mécanique des fluides

Ecoulements irrotationnels : potentiel des vitesses :

- Définitions et propriétés
- Potentiels des vitesses d'écoulements élémentaires et de leurs combinaisons
- Potentiel complexe des vitesses : transformation conforme

Introduction aux écoulements turbulents

- Expérience historique de Reynolds
- Les équations de base
- Equations du mouvement turbulent : description statistique

Etudes de cas combinant les notions introduites dans les différents chapitres

Module 4 : Analyse du comportement dynamique

- Formalisme des équations de Lagrange sans et avec multiplicateurs de Lagrange.
- Recherche des positions d'équilibre et linéarisation.
- Caractérisation du comportement dynamique, stabilité et analyse harmonique.

Pré-requis de l'UE

Bibliographie conseillée

???

Évaluations par contrôle continu

Contrôle continu pour chaque module (2h par module).